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Abstract—Software reuse is considered the silver bullet of
software engineering. It has been largely demonstrated that
the proper implementation of design and reuse principles can
substantially reduce the effort, time, and costs required to develop
software systems. Design patterns are one of the most affirmed
techniques for source code reuse. While previous work pointed
out their benefits in terms of maintainability and understand-
ability, some seem to raise the opposite concern, suggesting that
they can negatively impact code quality from the developers’
perspectives. We recognize such discrepancy in the literature, and
we aim to fill this gap by investigating whether and how design
patterns are related to the emergence of issues compromising
code understandability, namely the Complex Class, God Class, and
Spaghetti Code smells, which have been also shown to increase the
change- and fault-proneness of code. We perform an empirical
evaluation on 15 JAVA projects evolving over 542 releases, and
we find that, although design patterns are supposed to improve
code quality without prejudice, they can be related to dangerous
issues, as we observe the emergence of code smells in the
classes participating in their implementation. From our findings,
we distil a number of implications for developers and project
managers to support them in dealing with design patterns.

Index Terms—Software Reuse; Quality Metrics; Software
Maintenance Effort; Empirical Software Engineering.

I. INTRODUCTION

Software reusability is considered the silver bullet of Soft-
ware Engineering. The term refers to reusing available source
code or already tested solutions to solve a similar problem
when implementing new features or refactoring the exist-
ing ones [6]. The proper application of reusability practices
guarantees developers to reduce time, effort, and costs of
the maintenance tasks [21], [30]. Most programming lan-
guages, especially the ones implementing the Object-Oriented
paradigm, provide a wide range of mechanisms to support
developers’ in applying encouraged best practices of software
reuse, i.e., leveraging third-party libraries, implementing pro-
gram abstractions, and introducing design patterns [12].

The idea of design patterns was proposed in 1995 by the
Gang of Four, who defined them as reusable solutions to
commonly occurring problems that arise during the design
and development of software applications [11]. Adopting such
reusability mechanisms can provide several advantages from
the developers’ perspectives, as their flexibility makes them
re-appliable by changing the context, the environment, and
the programming languages, without changing the philosophy

driving a given pattern [37]. The large spread of Object
Oriented programming languages boosted developers to reuse
instance classes and to create hierarchies that can be easily
used as a basis for the introduction of design patterns. Previous
studies investigated the use of design patterns in JAVA [14],
[7], [29], mainly because (1) JAVA offers, by design, mech-
anisms and data structures that make large use of reusability
principles, especially linked to inheritance, and (2) although
the fluctuating trends, JAVA is still one the most adopted
programming languages in large companies and open-source
communities.1 While most research emphasize the importance
of reusability mechanisms to guarantee high quality of the
software, a number of studies seem to go in the opposite
direction, highlighting that a sub-optimal implementation of
design patterns can, in turn, increase the code complexity and
negatively impact the code in terms of maintainability and
comprehension [19]. Fowler and Beck identified code smells
as indicators of the poor quality of code, affecting its cohesion,
coupling, and comprehensibility, ultimately making the code
difficult to maintain [10].

In this paper, we investigate the role that design patterns
play in the presence of code smells. We analyze 15 open-
source JAVA projects spanning over 542 releases, by extracting
information about the implemented design patterns and the
code smells affecting the classes, and assessing (1) the co-
occurrences of design patterns and code smells, and (2)
whether the presence of design patterns is correlated with
the formation of code smells. We find that, although design
patterns are intended to improve the quality of the code, as
they represent a reuse mechanism, there is no guarantee on
them enhancing the goodness of the software; on the contrary,
design patterns can in fact determine the appearance of code
smells in certain cases. We point out the importance of care-
fully dealing with design patterns by applying them properly
and monitoring their evolution in the software projects. Our
main points of contribution can be summarized as follows:

1) An empirical investigation of design patterns and their
impact on code smells, that can enhance the state of the
art on software reusability and, at the same time, can aid
practitioners in monitoring the changes in complexity and
comprehension when implementing design patterns;

1Source: https://www.tiobe.com/tiobe-index/
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2) A publicly available online appendix containing all the
scripts, raw data, and additional materials used to perform
our experiments, that can be leveraged for replication and
verification of our work [13].

In the following, we first report the state of the art on
design patterns and code smells, highlighting how our work
is positioned in the current body of knowledge. Then, we
present the design of our study, discussing the rationale driving
our goal, research questions, and methodological choices.
Afterwards, we comment the obtained results and draw out
the practical implications of our findings. Finally, we consider
the threats to the validity of our work, and we conclude the
paper by distilling an exhaustive summary.

II. RELATED WORK

In the context of our work, we summarize the state of the
art focused on the benefits and drawbacks of design patterns
and the current literature on code smells.

Design patterns have been introduced by the Gang of Four
in 1995 [11] and, since then, have been praised as the Holy
Grail of software reusability. They consist in ready-to-apply
solutions to recurring problems in software development, and
can aid developers in the design and implementation of source
code adhering to good cohesion and coupling principles of
Object Oriented programming.

Previous work has argued that design patterns may be
beneficial for the overall quality of the code. Hegedűs et al.
[17] investigated the connection between design patterns and
software maintainability by performing an empirical study
on more than 300 revisions of JHOTDRAW, a well-known
JAVA framework. They estimated the level of maintainability
of source code in terms of different quality attributes, such
as number of classes, lines of code, and density of code,
and found that each introduction of a design pattern instance
generated an improvement in the quality of the project.

However, related work has also discussed that design pat-
terns are not always beneficial for guaranteeing maintainabil-
ity, especially in terms of understandability and modifiability
of the code. Vokáč et al. [36] compared the maintainability
of programs designed with and without design patterns, by
performing a controlled experiment with 44 professionals.
They asked participants to execute a number of maintenance
tasks on two versions of C++ programs, i.e., one implemented
with design patterns and one without. They evaluated the
correctness of the executed tasks and the time required by
developers, assessing the positive or negative impact of de-
sign patterns on software maintainability. They argued that
each design pattern has its own nature and proper place of
use; they cannot be classified as good or bad in general
terms, but training sessions can improve both the speed
and quality of maintenance activities. More recently, Khomh
and Guéhéneuc [19] suggested that design patterns may not
always have a positive impact on code quality as seen from
practitioners’ perspective. By performing a survey study with
20 developers, they assessed the perceived impact that design
patterns have on the understandability of code. They found

that design patterns do not always impact quality attributes
positively, as the participants considered that, although they are
useful to solve design problems, they often decrease simplicity,
learnability, and understandability of the software.

Software quality attributes can be compromised also by anti-
patterns, also called code smells, introduced in the source code
either willingly or by accident [25]. Fowler and Beck defined
code smells as symptoms of bad design that can lead to an
increase in terms of maintenance effort and defect proneness
of source code [10]. Such issues could be introduced in the
code due to sub-optimal use of reusability mechanisms, e.g.,
making overuse of delegation strategies could ultimately lead
to a God Class, i.e., a class implementing an excessive amount
of responsibilities, also wrapping other classes’ duties. From
an empirical standpoint, several studies have been conducted
to understand the relationship between reusability mechanisms
and code smells; however, most of them are focused on the
concepts of inheritance and delegation [20], [26].

To the best of our knowledge, the only work investigating
the connection between design patterns and code smells was
conducted by Walter and Alkhaeir in 2015 [37]. They selected
two medium-size JAVA projects and considered 10 design
patterns and seven code smells related to maintainability,
e.g., Feature Envy, occurring when a method calls methods
on another class more times than on the source class, and
Message Chains, consisting in a client requesting another
object, which requests yet another one, and so on, navigating
the class structure. Their findings revealed that, in some cases,
the presence of design pattern was positively correlated with
the presence of code smell, e.g., the Proxy design pattern
sometimes led to the introduction of a Middle Man code smell.

Following the path traced by Walter and Alkhaeir [37]
and by Khomh and Guéhéneuc [19], we dive deep into the
impact that design patterns have on the presence of code
smells compromising the understandability and maintainability
of software. We apply a research method inspired by the
work of Walter and Alkhaeir [37] to assess the findings of
Khomh and Guéhéneuc [19] from a quantitative standpoint.
We investigate whether design patterns induce those specific
kinds of code smells that are perceived by most critics by
developers during maintenance activities [27], [32] and are
connected with the understandability of code, i.e., (1) Complex
Class, affecting code having high cyclomatic complexity, (2)
God Class, implementing several responsibilities, and (3)
Spaghetti Code, consisting in poorly organized control flow.

III. STUDY DESIGN

The goal of this study was to understand whether and how
design patterns are related with code smells. The context con-
sisted in 10 design patterns, i.e., Adapter/Command, Bridge,
Singleton, Template Method, Proxy, State/Strategy, Decorator,
Factory Method, Component, and Observer. The perspective
was of both researchers and practitioners, as the former are
interested in increasing the body of knowledge on this topic,
and the latter are concerned about understanding how design
patterns impact code quality in software systems.

2



GitHub

Decor 
Tool Dataset

Dataset

Data 
Integration

Statistical 
Model

Co-occurrence 
DP and Code 

Smells

X

Answer 
RQ1

X

Answer 
RQ2

Source 
Code

D.P. 
Detector

Fig. 1: Overview of the research method applied in this work.

Based on our goal, we formulated two research questions.

ü RQ1. What are the co-occurrences in terms of classes
between design patterns and code smells?

RQ1 aimed at comprehending the fluctuations in the fre-
quency of classes participating in a particular design pattern,
and the co-occurrence of code smells in such classes. We
wanted to assess whether classes implementing design patterns
contain code smells themselves, and we expected to see a low
frequency of smells in classes participating in design patterns.

We were interested in understanding whether and how
design patterns are correlated with the presence of code smells,
and for this reason, we asked:

ü RQ2. To what extent does the presence of design
patterns affect code smells?

To answer our research questions, we performed an em-
pirical study (1) analyzing the co-occurrences of code smells
in classes participating in design patterns, and (2) applying
statistical models to understand the impact of design patterns
on the emerging of code smells.

Figure 1 depicts the method applied in this work, which
we designed following the guidelines by Wohlin et al. [38]
and the ACM/SIGSOFT Empirical Standards2; in particular,
we leveraged the “General Standard”, “Data Science”, and
“Repository Mining” guidelines. First, we selected 15 JAVA
projects from GITHUB and manually built 542 releases. Then,
we extracted design patterns implemented in the projects
by leveraging the detection tool proposed by Tsantalis et
al. [35], and we identified code smells affecting the projects
by running DECOR [24] on each release. We combined these

2Available at: https://github.com/acmsigsoft/EmpiricalStandards

pieces of information to understand, on the one hand, the co-
occurrences of classes that collaborate into design patterns
and, simultaneously, are involved in some code smell. On the
other hand, we investigated whether design patterns affect code
smells from a statistical standpoint.

In the following, we report the detailed design of our work.
The complete dataset, scripts, and raw results of our study are
available in the online appendix of this paper [13].

A. Dataset Collection

Table I provides an overview of the dataset used in this
work. We defined two main criteria for the selection of the
projects to consider in our study:

Build Availability. We selected only JAVA projects that can
build without errors. This criterion is driven by the constraints
dictated by the design pattern detection tool by Tsantalis et
al. [35], which we selected to obtain data on the design pat-
terns implemented in the projects. The tool requires that target
projects build without errors, as it leverages JAVA BYTECODE
to generate an intermediate code representation. Thus, it can
only be executed on projects that can build successfully. To
ensure that, we manually compiled the candidate projects and
assessed their compliance with this criterion.

Number of Stars on GITHUB. We only selected projects
with a minimum of 2K stars on GITHUB. We set such a
threshold to avoid the inclusion of toy projects or personal
projects developed by users. The number of stars has been
demonstrated to be a good proxy metric to estimate the
popularity of repositories and their overall quality [28].

Considering the points above, we manually identified
GITHUB projects meeting the criteria. Due to the time-
consuming activity, we limited our search to the first 10 pages
of GITHUB results filtered to JAVA, finding 45 candidate
projects. Starting from the initial set of candidates, the first
and second authors manually set up the projects leveraging
the build system and directions provided in the corresponding
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Project Name Description Stars Forks N. Releases N. Releases Analyzed LOC Link
Arthas Java Diagnostic Tool 31,9k 6,9 47 43 61K – 46K https://github.com/alibaba/arthas
Apollo Configuration Management System for Microservices 27,8k 10,1k 38 8 88K – 90K https://github.com/apolloconfig/apollo

Caffeine High Performance Caching Library 13,2k 1,4k 65 9 70K – 83K https://github.com/ben-manes/caffeine
Data Transfer Project Transfer Data Online 3,4k 442 55 47 40K – 41K https://github.com/google/data-transfer-project

ApkTool Reverse Engineering 15,8k 3,3K 16 14 15K – 18K https://github.com/iBotPeaches/Apktool
JSQL Parser RDBMS agnostic SQL 4,2k 1,2K 30 4 50K – 55k https://github.com/JSQLParser/JSqlParser

Disruptor High Performance Inter-Thread Messaging Library 15,8k 3,8K 13 6 20K – 20K https://github.com/LMAX-Exchange/disruptor
Mockito Framework for Unit Tests 13,7k 2,4K 198 112 89K – 88K https://github.com/mockito/mockito

MyBatis-3 SQL mapper framework for Java 18,2k 12,1K 39 13 100K – 98K https://github.com/mybatis/mybatis-3
Eureka AWS Service Registry 11,7k 3,7K 146 109 50K – 53K https://github.com/Netflix/eureka
Hystrix Latency and Fault Tolerance Library 23,2k 4,7K 79 40 75K – 48K https://github.com/Netflix/Hystrix

Zuul Gateway Service 12,5k 2,3K 5 4 35K – 31K https://github.com/Netflix/zuul
RxJava Library for Composing Asynchronous and Event-Based Programs for Java-VM 46,8k 7,7K 231 101 41K – 42K https://github.com/ReactiveX/RxJava

Jadx Dex to Java Decompiler 33,6k 4,2K 27 19 118K – 70K https://github.com/skylot/jadx
Spring Data JPA Data Access Layer Simplify 2,6k 1,2K 78 13 45K – 44K https://github.com/spring-projects/spring-data-jpa

TABLE I: Overview of the projects analyzed.

GITHUB repository. However, 50% of the projects could not
be successfully configured and built, due to incompatibility
problems with the versions of some libraries. This issue is not
uncommon in the context of mining software repositories, and
was pointed out by Hassan et al. [16] when they performed
a comparison among the main JAVA building systems. After
filtering out the projects which could not be built, we were left
with 23 candidates. To avoid considering projects irrelevant to
our research questions, we ran the design pattern detection
tool [35] and discarded projects containing no instances of
design patterns. At the end of this process, we had identified
15 JAVA meeting the selection criteria and useful to our
experiments, reported in Table I.

B. Design Pattern Extraction

To extract the design pattern instances implemented in the
considered projects, we leveraged the tool by Tsantalis et
al. [35], which we selected on the basis of two main aspects:

Detection Confidence. The tool can detect 10 kinds of
design patterns, i.e., Adapter/Command, Bridge, Singleton,
Template Method, Proxy, State/Strategy, Decorator, Factory
Method, Component, and Observer, with 100% precision and
no false positives [35]. These performances make the tool
the state-of-the-art for design pattern detection. However, due
to the identical UML structure of Adapter/Command and
State/Strategy, the tool aggregates them into a single type, as
they cannot be distinguished by an automated process [35].
Flexibility Taken Into Account. Due to the internal imple-
mentation of the tool, it can also identify custom implemen-
tation of known design patterns types.

To perform its task, the tool executes a number of steps.
First, it analyzes the characteristics of the projects in terms of
associations, generalizations, method invocations, and so on.
At the end of this step, an n x n adjacency matrix is generated,
where n represents the number of classes. Afterward, the
tool identifies the inheritance hierarchies among the classes,
considering all kinds of inheritance implemented in JAVA,
i.e., specification inheritance, implementation inheritance, and
abstract classes, and leverages them to build a tree modeling
the hierarchical structure of the project. Such a tree generates
one or more subsystems that are then provided as input to
a similarity score algorithm, which compares the identified
subsystems with the structure of design patterns.

C. Code Smell Detection

To detect the code smells affecting the considered projects,
we used DECOR [24], as previously done in similar work [9],
[12], [15], [18] because it represents a good compromise be-
tween execution time and performance [5], [8], [24], reporting
100% recall, and precision greater than 50%.

In particular, DECOR employs a combination of multiple
heuristic approaches to detect code smells in source code.
Given a class A, the tool considers A to be affected by
a code smell S if and only if for each metric used to
estimate the presence of S, the following condition is verified:
metrici ≥ thresholdi. The higher the difference between
metrici and thresholdi, the greater the intensity of S.

We leveraged DECOR to detect three smells, i.e., Complex
Class, God Class, and Spaghetti Code, as they represent the
quality of the code in terms of understandability.

D. RQ1: Analyzing the Co-Occurrences of Design Patterns
and Code Smells

To answer RQ1, we calculated the frequency of classes
participating in design patterns and, at the same time, being
affected by code smells. To do this, we merged the data coming
from the execution of the design pattern detection tool by
Tsantalis et al. [35] and the code smell detector DECOR. We
computed the number of classes that are involved in some
design pattern and, at the same time, are affected by code
smells. We normalized all the results using MIN-MAX in the
range [0; 1], and plotted the frequency of co-occurrences by
means of heatmaps.

E. RQ2: Analyzing the Correlation between Design Patterns
and Code Smells

To address RQ2, we built a statistical model analyzing
the impact that the presence of a design pattern has on the
emerging of code smells. In the following, we report the
independent, dependent, and control variables involved in the
analysis with the statistical model.

Independent Variables. We were interested in understand-
ing whether and to what extent the presence of design patterns
impacts code smells. For this reason, we considered design
patterns as independent variables. We focused on 10 design
patterns, i.e., Adapter/Command, Bridge, Singleton, Template
Method, Proxy, State/Strategy, Decorator, Factory Method,
Component, and Observer. The selection of such set of design
patterns was driven by their availability, as they can be
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extracted by the design pattern detection tool by Tsantalis et
al. [35]. To avoid possible threats to validity, we considered the
same aggregation on design patterns made by the authors of
the tool; as the patterns Adapter/Command and State/Strategy
share the same UML structure, it is not possible to automati-
cally distinguish them by means of a tool.

Dependent Variables. As we aimed at understanding the
impact of design patterns on the emerging of code smells,
the presence of code smells affecting the code represented
the dependent variable in our study. We focused on three
code smells [10], i.e., (1) God Class, affecting a class that
implements several responsibilities, and it is invoked by most
of the system to perform their actions, (2) Spaghetti Code,
representing a class that implements long methods without
parameters, and (3) Complex Class, that is a class being hard to
understand and showing a high level of cyclomatic complexity.
The main reason driving the selection of such smells is given
by the claims made in previous work about them being repre-
sentative of code complexity and comprehensibility, which are
perceived as crucial for maintenance tasks in the perspective
of developers [1], [2], [19], [25]. Furthermore, we decided not
to consider additional known code smells, such as Parallel
Inheritance, Middle Man, or Refused Bequest due to issues in
the detection mechanisms. They have been formerly identified
leveraging a custom version of DECOR that implements a
dynamic approach for the detection [22]. Unfortunately, such
version is not publicly available, and its re-implementation by
the authors of this paper could have led to the introduction of
errors or bias in the detection.

Control Variables. Conscious that external unconsidered
factors can impact the fluctuation of the dependent variable,
we considered a set of code quality metrics as control variables
for our experiment, to avoid possible threats to the conclusion
validity of our study. We selected five control metrics, i.e.,
Lines of Code (LOC), Lack of Cohesion of Methods (LCOM),
Number Of Attributes (NOA), Weighted Methods per Class
(WMC), and McCabe’s Cyclomatic Complexity (CC); these
metrics have been demonstrated to be good estimators for code
quality [31], [33]. We extracted the control metrics by using
DECOR; however, we remark that DECOR does not consider
such variables during the estimation of the presence of code
smells, which means that there is no direct correlation between
the dependent and control variables of our study [4]. We
manually assessed the possibility of multi-collinearity among
the variables involved in our study, to avoid threats to the
validity of our work, as explained in the following.

Statistical Model. Given the nature of the dependent vari-
able, i.e., the presence or the absence of a certain code smell,
the Generalized-Linear-Model was used [34]. We selected
this statistical model because it can be applied to estimate
nominal variables that can assume two levels. We built the
model using the multinom function provided by the nnet3

package in R. Before running the statistical model, we took
into account the multi-collinearity problem, occurring when

3https://cran.r-project.org/web/packages/nnet/nnet.pdf

Adapter/
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Mybatis-Mybatis-3

Fig. 2: Co-occurrences of code smells and design patterns.

two or more independent variables are bounded with a high
level of correlation, and one of them can be used to predict
the other. The presence of multi-collinearity among variables
can bias the results, therefore, we followed the guidelines
proposed by Allison et al. [3] to mitigate this threat. We did not
remove any independent variable, because the standard error
was, in any case, lower than 0.9, and interpretability problems
arise with a standard error higher than 2.5 considering 95%
prediction interval [23].

IV. ANALYSIS AND DISCUSSION OF THE RESULTS

In this section we report the results of our study and discuss
about the implications of our findings.

A. On the Co-occurrence of Design Patterns and Code Smells

RQ1 was focused on understanding whether and to what
extent design patterns and code smells co-occur in the same
classes. Figure 2 provides an overview of the results obtained
from the co-occurrences analysis. For a matter of space, in this
paper we report the data related to four projects, and we make
the complete results available in the online appendix [13]. For
each project, the figure depicts a heatmap reporting the extent
to which classes participating in design patterns contained
code smells. For example, in the MYBATIS-3 project, 7.69% of
the classes participating in an instance of Adapter/Command
were affected by the God Class smell.

The results obtained from the 15 analyzed projects were
variegated, hinting at the observation that the co-occurrence
of design patterns and code smells may vary depending on
the project. By analyzing the frequencies reported in each
heatmap, we noticed that two main patterns emerged, describ-
ing two families of projects. The first kind of project was
characterized by design pattern instances completely free from
code smells. That was the case of projects APOLLO, APK-
TOOL, DATA TRANSFER PROJECT, JSQL PARSER, DISRUP-
TOR, MOCKITO, and SPRING DATA JPA. In these projects,
none of the classes participating in design patterns were
affected by code smells. The opposite pattern arose from
a set of seven projects which presented a high frequency
of co-occurrence of design patterns and code smells, i.e.,
HYSTRIX, CAFFEINE, MYBATIS-3, EUREKA, RXJAVA, JADX
and ZUUL. Such projects exhibited code smells affecting
classes participating in design patterns, and in each project
the threatened types of design patterns went from two to
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four. A single project, i.e., ARTHAS, presented only one co-
occurrence, in fact the State/Strategy pattern was the sole
affected by the God Class and Spaghetti Code smells.

An interesting observation emerged from the analysis of
co-occurrence, which showed that the State/Strategy pattern
was touched by code smells in every project—except those
not presenting any co-occurrence. In particular, in all the
projects revealing at least or exactly one co-occurrence, classes
implementing the State/Strategy pattern were affected by the
God Class smell, in eight projects they also showed Spaghetti
Code issues, and in four projects they presented Complex
Class smells. We conjecture that this result is driven by the
characteristics of the State/Strategy pattern itself, as its goal
is to provide different behaviors depending on the current
state of an object [11]. We suppose that as the behaviors
to implement grow in number and size, the complexity of
the involved classes also tends to increase. This observation
remarks the non-triviality of the use of design patterns to
enhance code quality and maintainability; as design patterns
themselves risk being affected by the problems they aim at
avoiding. The Adapter/Command pattern showed a similar
trend to the State/Strategy one, as it was threatened by God
Class and Spaghetti Code in five of nine projects, and by
Complex Class in two projects. We observed that instances of
the Singleton and Bridge patterns appeared in co-occurrence
with code smells in four projects, followed by the Template
Method, which emerged in three projects. Classes implement-
ing the Observer and Decorator patterns were affected by code
smells in two projects, while Factory Method implementations
resulted being smelly in one project.

¤ Key findings of RQ1.

Classes participating in design patterns may be affected by
code smells, resulting impacted by the same problems they
are supposed to avoid. The State/Strategy pattern emerged
in all projects as being threatened by code smells, followed
by the Adapter/Command pattern, which resulted being
compromised in six projects.

B. On the Impact of Design Patterns on Code Smells

With our second research question, we aimed at assessing
how the presence of design patterns impacts the arising of
code smells. By performing statistical analysis, we found that
most design patterns did not influence the code into being
affected by code smells. However, in nine cases, the analysis
revealed that the implementation of design patterns determined
the presence of code smells in a statistically significant way.
Table II reports the complete results of the statistical analysis.
The first observation we noticed studying the results was
related to the State/Strategy pattern, as it appeared as the
most co-occurring with code smells in the first phase of our
research. Nevertheless, the statistical analysis revealed that its
presence did not significantly affect the emerging of Complex
Class and God Class smells, but only determined the code
being Spaghetti. On the other hand, the Adapter/Command

TABLE II: Results of the statistical model concerning the
relationship between design patterns and code smells.

Design Pattern Complex Class God Class Spaghetti Code
Adapter/Command 8.341 0.594∗∗∗ -0.384∗

Bridge 17.129 17.129∗∗∗ 0.265
Component 166.346 1.544∗∗∗ -12.602
Decorator 125.670 -0.189 -0.808
Factory Method 1,063.142 -11.255 1.157∗∗

Observer 68.508 1.801 1.380
Proxy 1,008.371 -11.891 -10.424
Singleton 93.883 1.722∗∗∗ -2.392∗∗

State/Strategy -4.897 -0.036 0.349∗∗∗

Template Method -16.859 0.586∗∗∗ -0.146
LCOM -0.0001 -0.0003∗∗∗ -0.0003∗∗∗

LOC 0.014 0.007∗∗∗ 0.007∗∗∗

McCabe 7.598 -0.005∗∗∗ 0.002∗∗∗

NOA -0.088 0.034∗∗∗ 0.004∗∗∗

WMC -0.008 0.074∗∗∗ 0.033∗∗∗

Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

pattern turned out to be significant in the occurrence of the
God Class smell and in a minor manner also for the Spaghetti
code, in concordance with the results observed in RQ1. The
presence of God Class was significantly affected also by the
Bridge, Singleton, and Template Method patterns, although the
co-occurrences were found in few projects.

In contrast with the purposes of design patterns, which
include guaranteeing code maintainability and comprehension,
we found that their presence often leads to the introduction of
code smells, which are signs of poor implementation practices
instead. This led us to reflect on the importance of properly
designing and applying best practices for code maintainability,
as the effects of our choices can produce unexpected outcomes.
We observed that, although design patterns are supposed to
make the perfect code, they can be determinant for the arise
of code smells. We conjecture that the motivation behind
this phenomenon can be connected with the intention driving
the introduction of design patterns; attempting to reorganize
the code to make it better structured, developers actually
introduce degrees of complexity, ultimately leading to code
smells threatening the overall program comprehension.

¤ Key findings of RQ2.

The presence of design patterns does not regardless guar-
antee good quality, as they can be affected by code smells.
In particular, the presence of a God Class can be associated
with a number of patterns, such as Adapter/Command,
Bridge, Singleton, and Template Method.

V. FURTHER DISCUSSION AND TAKE-AWAY MESSAGES

The analysis of the results ignited our reflection and think-
ing, leading us to distill a number of take-away messages we
believe are meaningful for researchers and practitioners. In the
following, we argue our discussion points that led to deriving
such practical implications.

Design Patterns: The Double-edged Sword. By definition,
design patterns are intended to improve the quality of code,
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as they are introduced with the purpose of organizing the
classes in such a way that good attributes of inheritance and
delegation are enhanced. However, implementing such reuse
mechanisms is not trivial, as developers may accidentally fall
into mistakes, such as overuse, e.g., adding design patterns
when not necessarily needed, or misuse, e.g., making a sub-
optimal choice on the kind of pattern to employ for a specific
problem. Such mistakes can eventually lead to bad effects,
unnecessarily adding atoms of complexity to the code, which
in turn can result being less comprehensible and even affected
by smells, as observed in our study. Therefore, there is the
need for developers to focus on properly applying design
patterns [39], to avoid declining their positive effects into
worsening the code quality.

 A positive solution, if improperly used, can lead to un-
wanted consequences. Developers should commit to taking
advantage of design patterns in a careful way, to avoid misuse
or overuse mistakes.

Awareness is the Hilt. We conjecture that one of the mo-
tivations behind the misuse and overuse mistakes discussed
before lies in the implementation of design patterns without
the appropriate attention. As the name suggests, design pat-
terns are meant to be introduced at design time, when the
responsibilities and relationship of classes are planned. At such
a high level of abstraction, practitioners should not feel like
applying design patterns just for the sake of implementing
a reuse mechanism, but they should naturally get inclined
towards the choice, by observing the problem definition and
the relationships among classes. Afterwards, the introduction
of a particular kind of design pattern should be supported by
a dedicated phase of focused analysis, to assess whether it
is worth employing, or risks adding unnecessary complexity.
Nevertheless, practitioners should be conscious of the threats
connected with misuse and overuse practices, to avoid ap-
plying them recklessly. We believe that awareness is the hilt
empowering developers to handle the double-edged sword of
reuse mechanisms. This raises the need (1) for practitioners
to keep staying focused on the thinking and reasoning that is
necessary at design time, and (2) for managers to encourage
their teams to constantly learn and train.

 Awareness of the intended purpose and misuse risks asso-
ciated with design patterns is the key to them being properly
used. The introduction of design patterns should be carefully
planned at design time, thoroughly reasoning on the specific
problem, to avoid making sub-optimal choices.

VI. THREATS TO VALIDITY

In this section, we recognize the possible threats that could
impact the results of our study, and discuss the mitigation
strategies that we applied.

Construct Validity. Construct validity refers to the relation-
ship between theory and observation. The main concern re-
gards the selection of the dataset leveraged in the experiments,
as the choice of the dataset can influence the observed results.
To mitigate this aspect, we adopted a rigorous process to select

projects based on empirical evidence of their characteristics.
On the one hand, we selected only popular projects publicly
hosted on GITHUB, estimating their popularity based on
the number of stars. On the other hand, we only selected
projects for which a building system was provided, and we
manually inspected projects to ensure compatibility with the
tools adopted to extract design patterns and code smells.
Another possible threat to construct validity is concerned with
the tool leveraged to extract data on dependent, independent,
and control variables. To mitigate this aspect, we chose the
state-of-the-art tools (1) to extract code smells and CK metrics,
i.e., DECOR, and (2) to detect design patterns, i.e., the tool pro-
posed and validated by Tsantalis et al. [35]. Although it comes
with possible imprecision, i.e., design patterns sharing the
same UML structure (Adapter/Command and State/Strategy)
are considered the same, it still represents the state-of-the-art
for design pattern detection.

Internal Validity. Threats to internal validity are factors that
could influence the observed results. In order to avoid threats
affecting the statistical model employed to answer RQ2, we
kept an eye on CK metrics, which acted as control variables.

Conclusion Validity. The major threat to conclusion va-
lidity regards the application of statistical models to answer
our second research question. We selected the Multinomial
Logistic Linear model [34] due to the nature of the problem,
and we also considered possible multi-collinearity to avoid any
interpretation bias.

External Validity. Threats to external validity are linked
to the generalizability of the observed results. We analyzed
542 releases of 15 different projects in terms of scope and
size. We are aware that generalizability can depend on multiple
aspects, such as programming language; however, as part of
our future work, we plan to extend this study, considering a
broader set of projects to analyze, selecting them according to
a variety of programming language, domain, and size.

VII. CONCLUSION AND FUTURE WORK

This paper presented a preliminary analysis of the relation-
ship between design patterns and code smells. We analyzed
15 Java projects consisting in over 542 releases, as we were
interested in (1) assessing the co-occurrence of design patterns
and code smells, and (2) measuring how the presence of design
patterns impacts the appearance of code smells.

We found that classes participating in design patterns are
often affected by code smells themselves, hinting at the fact
that not everything that is supposed to be beneficial for
code quality is actually advantageous without prejudice. As
in the concept of Yin and Yang, nothing is completely and
purely white or black; but there is always some darkness
in the light. Even though we expect design patterns to be
absolutely good for the code, they can hide some drawbacks.
In fact, we observed that their presence is determinant for code
smells to appear. Out of 10 design patterns analyzed, seven
showed a positive correlation with the presence of at least
one code smell. This finding drives us to encourage managers,
designers and developers to carefully ponder their choice and
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continuously monitor the evolution of design patterns in their
software, as they may end up being affected by quality issues.

As a future part of our agenda, we want to extend our
experiments by considering a larger dataset to assess the
reported findings. Finally, by surveying developers, we aim
to grasp the developers’ perspectives on the impact of design
patterns on code smells.
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