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a b s t r a c t

Nowadays, machine learning is being used to address multiple problems in various research fields, with
software engineering researchers being among the most active users of machine learning mechanisms.
Recent advances revolve around the use of quantum machine learning, which promises to revolutionize
program computation and boost software systems’ problem-solving capabilities. However, using
quantum computing technologies is not trivial and requires interdisciplinary skills and expertise. For
such a reason, we propose QuantuMoonLight, a community-based low-code platform that allows
researchers and practitioners to configure and experiment with quantum machine learning pipelines,
compare them with classic machine learning algorithms, and share lessons learned and experience
reports. We showcase the architecture and main features of QuantuMoonLight, other than discussing
its envisioned impact on research and practice.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v1
Permanent link to repository https://github.com/ElsevierSoftwareX/SOFTX-D-22-00446
Permanent link to Reproducible Capsule
Legal Code License Common Development and Distribution License 1.0
Code versioning system used git
Software code languages, tools, and services used Python, IBM Quantum
Compilation requirements, operating environments Python ≥ 3.7,Anaconda ≥ 2021.11,MySQL ≥ 7.0
Link to developer documentation/manual https://github.com/Robertales/QuantuMoonLight
Support email for questions sesalab@unisa.it

Software metadata

Current software version v1
Permanent link to executables of this version https://sesaquantumoonlight.ngrok.io/
Permanent link to Reproducible Capsule
Legal Software License Common Development and Distribution License 1.0
Computing platforms/Operating Systems web-based application
Installation requirements & dependencies Python ≥ 3.7,Anaconda ≥ 2021.11,MySQL ≥ 7.0
Link to user manual https://github.com/Robertales/QuantuMoonLight
Support email for questions sesalab@unisa.it

∗ Corresponding author.
1. Motivation and significance
E-mail address: slambiase@unisa.it (Stefano Lambiase). Machine Learning (ML) is now, more than ever, one of the
primary mechanisms employed to solve real-world problems.

ttps://doi.org/10.1016/j.softx.2023.101399
352-7110/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
c-nd/4.0/).

https://doi.org/10.1016/j.softx.2023.101399
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101399&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00446
https://github.com/Robertales/QuantuMoonLight
mailto:sesalab@unisa.it
https://sesaquantumoonlight.ngrok.io/
https://github.com/Robertales/QuantuMoonLight
mailto:sesalab@unisa.it
mailto:slambiase@unisa.it
https://doi.org/10.1016/j.softx.2023.101399
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Francesco Amato, Matteo Cicalese, Luca Contrasto et al. SoftwareX 22 (2023) 101399

A
f
e
l
t
f
T
n
e
a
t
c
f
t
c
p
I
p
u
I
t
s
h
D
a
a
l
d
n
o
n
t
t
t
t
o
l
t
c

l
q
e
p
r
t

t
v
c
l
n
i
u
l
h
w

t
a
s
t

mong the various research communities which are benefiting
rom its use, the software engineering research one has been
mploying it to support practitioners under several perspectives
ike the analysis of source code naturalness [1], code smell detec-
ion [2,3], defect prediction [4], and test code quality (e.g., test
lakiness [5] and test case effectiveness [6]), to name a few.
he adoption of quantum computing technologies represents the
ext frontier of the research on Machine Learning in software
ngineering [7–9], as it can help solve some of the limitations
ffecting classical computing—e.g., long training times. Quantum
echnologies have the potential to exponentially increase pro-
essing capabilities, enabling more efficient and faster algorithms
or tasks such as detection and pattern recognition [10], leading
o better quality software. Moreover, quantum machine learning
an allow deeper analyses of large or complex data sets, being
articularly useful in the field of scientific research. Big firms like
BM, Google, and Microsoft are investing in quantum hardware,
roviding access to some of their resources for experimental
sage by researchers and practitioners. This is the case of the
BM Quantum platform [11], which allows users to gain access
o quantum machines via a cloud-based API and lets them de-
ign, implement, and execute their quantum applications on IBM
ardware. Similar solutions are provided by Microsoft Azure,1
-Wave,2 and Xanadu.3 Recently, Grossi et al. [12] proposed
highly extendable framework to build quantum-based web

pps. Moreover, Di Marcantonio et al. [13] proposed QUASK, a
ibrary to integrate quantum machine learning algorithms in tra-
itional programs. However, exploiting quantum computing tech-
ologies is still challenging and requires inter-disciplinary skills,
ther than the basic knowledge about the underlying technology,
amely how quantum circuits are defined and work [14–16]. In
he case of classic machine learning, a plethora of ready-to-use
ools and guidelines are currently available to allow non-experts
o exploit the technology as a black-box, leveraging its func-
ionalities without necessarily understanding the inner-working
f ML algorithms. This is not the case for quantum machine
earning, as users must have knowledge of the quantum engine
o experiment with the computing platforms provided by large
ompanies owning the hardware.
To address this gap, we propose QuantuMoonLight, a

ow-code web application designed to fulfill the following re-
uirements of researchers and practitioners: (1) configure and
xperiment with quantum machine learning algorithms; (2) com-
are quantum solutions with canonical machine learning algo-
ithms; and (3) openly discuss experience and share solutions
hrough a community-inspired blog.

The goal of QuantuMoonLight is to create a level of abstrac-
ion that hides the intrinsic complexity of quantum circuits, pro-
iding users with a graphical user interface through which they
an interact with quantum machines and run quantum machine
earning algorithms. In contrast with existing solutions for run-
ing quantum algorithms, that are designed to be used by experts
n the domain, QuantuMoonLight is designed for non-expert
sers, that are allowed to experiment with quantum machine
earning algorithms without the underlying knowledge about
ow quantum circuits work. QuantuMoonLight is available as a
eb application,4 and is accompanied by a demonstration video.5
In this paper, we describe the architecture, features, and po-

ential impact of QuantuMoonLight. Moreover, we report on
preliminary assessment of the tool, which focused on two

oftware engineering tasks such, as those of code smell and flaky
est prediction.

1 Azure Quantum: https://azure.microsoft.com/it-it/services/quantum/
2 D-Wave: https://www.dwavesys.com/
3 Xanadu: https://xanadu.ai/
4 QuantuMoonLight site: https://sesaquantumoonlight.ngrok.io/
5 QuantuMoonLight demo video: https://youtu.be/xhXj1uZ7P1M

2. Software description

2.1. Overview of the tool

QuantuMoonLight is a web application—already deployed on
the web—to experiment with quantum machine learning. It relies
on the IBM Quantum Computing platform [11]—i.e., a framework
that allows quantum computers to be programmed on the cloud—
and, from a software perspective, uses the Qiskit framework6—i.e.,
an open-source SDK for working with quantum computers. The
tool was designed to allow for (1) the configuration of quantum
machine learning models and (2) the comparison between quan-
tum and classic machine learning solutions. We provided the tool
with a user-friendly graphical interface to abstract the users from
the natural complexity of the quantum mechanisms employed.

2.2. Software features and architecture

QuantuMoonLight allows users to perform the following op-
erations:

1. Configuration and validation of quantum machine learning
models;

2. Comparison of quantum and classic machine learning so-
lutions developed on the platform;

3. Sharing knowledge and results about quantum machine
learning solutions through a community-inspired blog.

We designed the tool to make it suitable for empirical research
aiming at evaluating the performance of quantum algorithms. In-
deed, QuantuMoonLight can help researchers with data prepro-
cessing (e.g., data cleaning and normalization), hyper-parameters
configuration, feature selection, validation strategy choice, and
evaluation metrics set to compute in an experimentation. It is
important to note that the tool does not automatically select
the best pipeline for a task but requests the user to do that.
Moreover, the blog feature can let researchers and practitioners
discuss about the experiments conducted, hence (1) increasing
the awareness of the potential of quantum machine learning and
(2) lowering the entry barriers faced by newcomers approaching
such a complex theme. The tool requires users to be registered
to acquire data about their permissions over the IBM Quantum
platform [11].

Fig. 1 reports the architecture of the tool. It was developed as
a web application, implementing a three-tier architecture. More-
over, we split QuantuMoonLight into three core subsystems:

• User: It manages the users account, login, and registration
processes;

• Community blog: It implements the community blog fea-
tures;

• Machine learning: It implements the application’s functions
related to machine learning—both quantum and canonical.

In the tool, data flows vertically through the three tiers, from the
presentation to the storage. All the subsystems are decoupled and
independent. Each subsystem is horizontally distributed through
the three tiers. The presentation tier manages the interaction with
users by means of the graphical user interfaces. We developed
three different sets of GUIs, one for each subsystem.

Regarding the application tier, while the User and Commu-
nity Blog implement basic functionalities—e.g., login—the ma-
chine learning one is the most interesting. This subsystem enables
the creation of both classic and quantum machine learning mod-
els from an input dataset. The quantum machine learning part

6 Qiskit: https://qiskit.org/
2
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Fig. 1. QuantuMoonLight tool architecture.

onsists of an adapter that implements the communication—
ver an HTTP protocol—with the Web API of the IBM Quantum
omputing platform [11]—implemented using the REST API of the
latform.7 The adapter has been designed to be highly indepen-
ent from the IBM platform, allowing future integrations of new
uantum learners, configuration steps, and back-ends. As for the
lassic machine learning part, our web application implements
n-premise solutions based on scikit-learn.8
The platform uses a database—implemented as a cloud SQL

atabase—to collect historical data and implement the community-
riented blog. From the implementation side, we used Python
nd the well-known Flask framework for the web-deployment
nfrastructure.

.3. Quantum machine learning with QuantuMoonLight

To enable experimentations, QuantuMoonLight relies on the
APIs provided by Qiskit. Specifically, the tool allows users to
exploit algorithms for data classification and quantum support
vector regressors.9 As for the classifiers, the tool implements
the Quantum Support Vector Machine, the Quantum Support Vector
Classifier, the Quantum Neural Network Classifier, and the Pegasos
Quantum Support Vector Classifier algorithm defined by Shalev-
Shwartz et al. [17]. As for the regressors, the tool implements the
Support Network and Variational Quantum Regressor.

To use this tool, an account (and a token) on the IBM Quantum
Computing [11] platform is required. The IBM Quantum platform
provides different back-end systems with different hardware po-
tentiality to perform the quantum operations.10 For example,

7 REST API of IBM Quantum: https://cloud.ibm.com/apidocs/quantum-
omputing
8 Scikit-learn: https://scikit-learn.org/stable/
9 Qiskit Machine Learning API reference: https://qiskit.org/documentation/
achine-learning/apidocs/qiskit_machine_learning.algorithms.html

10 IBM Quantum back-end: https://quantum-computing.ibm.com/services?
ervices=systems

the ibm_washington system is characterized by a high number of
qubits (127), while the ibm_lagos has fewer (7). Our application
allows users to select the desired back-end to perform ML tasks,
but with limitations based on the type of logged user. Specifi-
cally, ‘‘standard’’ registered users can select among seven systems
equipped with a number of qubits ranging from 1 to 5. Users with
a research license can select all the systems for ‘‘standard’’ users
plus three machines provided with 7 qubits. Moreover, being that
QuantuMoonLight relies on IBM quantum machines, the queue to
access such machines depends on the status of the IBM Quantum
platform. Specifically, the policy of IBM stipulates that each back-
end has a separate queue with a first-in-first-out logic; this means
that if the selected back-end is busy, QuantuMoonLight informs
the user that the computation time could be longer.

3. Illustrative examples

QuantuMoonLight provides its features through a four-page
website. In the following, we describe the page representing
the core functionalities of the developed tool—more details are
available in our online appendix [18].

Fig. 2 shows the GUI of the web page enabling to configure and
run experiments with QuantuMoonLight. The first step consists
in loading the desired dataset into the tool (Sub-figure 2.1). Quan-
tuMoonLight allows uploading the training, test, and prediction
sets, depending on the specific experiment the user would like
to run. The tool also provides the possibility to quickly setup
experiments; the user can indeed check whether they would like
to apply default configurations in terms of feature extraction,
feature selection, and validation techniques. In particular, the
latter is implemented using a percentage split that automat-
ically assigns to the training set 80% of the instances in the
uploaded dataset and 20% in the test set. The user can then
select the quantum machine learner to use among the supported
ones (Sub-figure 2.2).

A user can already execute quantum experiments with the
first two configuration steps. However, further customization
3
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Fig. 2. The GUI provided by QuantuMoonLight to run experiments.

s allowed through the ‘‘Advanced Options’’ menu, showed in
ub-figures 2.3-2.7. In terms of validation, the tool provides an
dditional setting, i.e., the k-fold cross-validation. The platform

also enables the automation of a number of data pre-processing
steps, such as data balancing or standardization. The user can
manage features by employing Principal Component Analysis [19]
for feature extraction and choosing to rely on the k-best fea-
ures [20] for prediction. In both cases, the user can select the
umber of features to work with. Finally, the user has to select the
ack-end, namely the characteristics of the quantum hardware.
After user confirmation, QuantuMoonLight will connect to

the IBM services, start the execution, and inform the user via
e-mail once the experiment is concluded. Once the results are
available, the user can request the comparison with the per-
formance of canonical machine learners through the dedicated
analysis page—described in the online appendix [18].

4. Evaluation of the tool

We preliminarily assessed QuantuMoonLight on two soft-
ware engineering tasks, i.e., predicting (1) code smells [21] and
(2) flaky test [22]. The former are suboptimal implementation
choices applied by programmers, the latter are non-deterministic
tests exhibiting both a passing and failing behavior. This focus
is due to our expertise and willingness to experiment with such
a new powerful technology in the context of our own research.
Also, we assessed the usability of the tool [23].

Code Smells and Flaky Tests Prediction. As training data for
prediction tasks, we used product metrics, e.g., the number
of lines of code and lack of cohesion. With respect to the

dataset size, our experiment can be considered large-scale.
Both datasets are indeed quite large when considering the
typical studies conducted in the field of software engi-
neering. As for the code smell prediction case, we used a
dataset composed of 25,000 instances provided by Palomba
et al. [21]; it focuses on the analysis of five large-scale
software projects, taking into account a set of five code
smell types of different granularity. As for the flaky test
prediction case, we analyzed 9,785 test cases, of which 670
were flaky [24]: in literature, other datasets have similar
sizes, e.g., in their seminal work, Bell et al. [25] considered
datasets of 412 and 423 flaky tests, respectively.
For both tasks, we used QuantuMoonLight to prepare
the datasets, configure the hyper-parameters, and opti-
mize the pipeline according to our domain knowledge and
the literature available on the matter. Specifically, all the
choices conducted in the study were based on (1) the
paper by Pecorelli et al. [26] for the code smell prediction
study and (2) the paper by Pontillo et al. [24] for the
flaky test prediction study. Finally, we employed 10-fold
cross-validation and the Quantum Support Vector Classi-
fier—detailed configurations and results are available in the
online appendix [18].
We measured the performance using accuracy and training
time. The evaluation metrics were chosen based on previ-
ous papers published in the field, which showed that these
are among the recommended aspects to consider when
assessing quantum machine learning solutions [27–29].
When considering the code smells prediction task, the re-
sults achieved were in line with those reported in previous
4
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Table 1
Iterative usability test.
# Task description

1 Perform a quantum regression task using the website.
2 Compare the quantum regression task with a canonical one.
3 Access the community blog and post the results of your tasks.

work [30], yet we observed a reduction in the training
time. As for the task of flakiness prediction, we noticed
that the performance achieved was lower compared to
what showed by existing approaches [5,24], while the com-
putational cost drastically decreased. While the accuracy
obtained by quantum machine learning in the two use
cases considered was relatively low, we believe that our
results would be helpful to researchers to (1) initially es-
timate the potential of quantum machine learning when
applied to the software engineering domain and (2) use
the features made available by QuantuMoonLight to in-
vestigate other research problems. Hence, the tool may
impact research since it can support researchers when
experimenting with quantum machine learning, other than
empirical comparisons with traditional machine learning
solutions.

Usability Improvement. We evaluated the usability of the tool
by applying iterative usability testing [23], thus implement-
ing an iterative process to get continuous feedback from
users and keep improving the user experience of the tool.
We conducted the test with 12 students of the course ‘‘In-
troduction of Machine Learning’’ at the Jheronimus Academy
of Data Science (The Netherlands); participants were vol-
untary. Students had to perform three tasks—described in
Table 1—during each iteration, sharing feedback on the
tool’s usability. After each iteration, we interviewed partic-
ipants to assess the tool’s usability in terms of learnability,
efficiency, and satisfaction. We improved the user interface
of the tool according to the feedback received. Overall,
we conducted three iterations before reaching saturation.
During the first iteration, students identified several areas
for improvement, including the size of graphical elements,
which some users found too small, and the need for more
guidance when interacting with the tool. Based on this
feedback, we changed the size of the graphical elements
and included info boxes to guide users through the tool’s
features. In the second iteration, we continued to collect
students’ feedback and made further changes to the user
interface based on them. We found that users were still
struggling to understand certain tool features, so we made
additional changes to the website content and included
more detailed feedback to guide users through those fea-
tures, e.g., parameters configuration. Finally, in the third
iteration, we conducted a final round of user testing and
found that students could use the tool more effectively and
with fewer issues, thus reaching saturation.

5. Impact

Quantum technology is still far from being exploitable for ev-
eryday tasks. However, QuantuMoonLight can contribute in this
regard, facilitating its adoption by researchers and practitioners.

Impact on Research. The increasing interest in the quantum
machine learning efficiency field [29,31] stimulates re-
searchers to conduct more and more empirical studies to

compare quantum-based solutions and classic ones. Quan-
tuMoonLight was designed to be a low-code platform,
allowing researchers to interact with quantum machine
learning through a user interface that would allow them to
experiment with multiple configurations of quantum ma-
chine learning algorithms and compare a number of classic
solutions. In this sense, the tool is impactful as it eases
the investigation of quantum machine learning capabili-
ties. Perhaps more importantly, the community-inspired
blog allows researchers to share lessons learned, experi-
ences, and reflections that may increase awareness about
quantum computing, driving the community to grow.

Impact on Practice. QuantuMoonLight opens a ‘‘window’’ on
the quantum world that can allow practitioners—e.g., data
scientists and developers—to exploit such a technology to
make decisions faster. Practitioners can indeed use the
platform to verify the suitability of quantum computing
solutions for a large plethora of tasks, e.g., software en-
gineering, and make informed decisions on their adoption
in practice. At the same time, practitioners can read about
successful experiences through the blog, learning how to
configure quantum machine learning solutions.

6. Concluding remarks

QuantuMoonLight is a web application to experiment with
quantum machine learning design to be extremely usable and
lower the entry barrier to quantum computing for most users.
We evaluated the tool on two prediction tasks, i.e., flaky tests and
code smells prediction, other than its usability through iterative
usability testing.

We aim at extending the set of implemented quantum algo-
rithms with more advanced ones—e.g., the Variational Quantum
Eigensolver (VQE) and the Quantum Boltzmann Machine (QBM).
Furthermore, we plan to extend our application from an inte-
gration point of view, including solutions from other providers—
e.g., Microsoft Azure Quantum and Xanadu. Finally, the openly
available implementation will allow researchers to use the tool
in other contexts and/or different, wider experimentation on
quantum machine learning.
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