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Abstract—Software refactoring is the activity associated with
developers changing the internal structure of source code with-
out modifying its external behavior. The literature argues that
refactoring might have beneficial and harmful implications for
software maintainability, primarily when performed without the
support of automated tools. This paper continues the narrative
on the effects of refactoring by exploring the dimension of
program comprehension, namely the property that describes
how easy it is for developers to understand source code. We
start our investigation by assessing the basic unit of program
comprehension, namely program readability. Next, we set up a
large-scale empirical investigation – conducted on 156 open-
source projects – to quantify the impact of refactoring on
program readability. First, we mine refactoring data and, for
each commit involving a refactoring, we compute (i) the amount
and type(s) of refactoring actions performed and (ii) eight state-
of-the-art program comprehension metrics. Afterwards, we build
statistical models relating the various refactoring operations to
each of the readability metrics considered to quantify the extent
to which each refactoring impacts the metrics in either a positive
or negative manner. The key results are that refactoring has a
notable impact on most of the readability metrics considered.

Index Terms—Software Refactoring; Program Comprehen-
sion; Program Readability; Empirical Software Engineering.

I. INTRODUCTION

In the late 1990s, Martin Fowler introduced the term
“software refactoring", defining it as developers’ activity to
improve the quality attributes of source code without changing
its external behavior [1]. By definition, refactoring is supposed
to benefit various attributes concerned with source code quality
and maintainability. For instance, let us consider the case
of the Extract Class refactoring [1]. This is the operation
recommended for the removal of the so-called God Class code
smell [1], which refers to a large and poorly cohesive class
that centralizes the behavior of a software system, thus heavily
affecting change- and fault-proneness [2], [3]. The refactoring
aims at (i) grouping together methods of the God Class that
contribute to the implementation of similar responsibilities and
(ii) extracting them by creating new, more cohesive classes
[1]. An Extract Class is, therefore, able to improve the overall
structure of source code, helping developers in maintaining
smaller classes over the software evolution. Along the same
line, other refactoring operations provide specific benefits for
quality attributes like cohesion, coupling, complexity, and

inheritance [4]–[7]. Nonetheless, theory is not always aligned
to practice [8]. The software engineering research community
has been investigating refactoring over the last decades under
different perspectives [6], [9]–[11], providing (i) recommenda-
tion systems to help developers applying refactoring in practice
[12]–[14], (ii) insights into the reasons pushing developers to
refactor source code [5], [15]–[17], and (iii) evidence of the
current barriers preventing refactoring in practice [18]–[21].

Lack of usable automated tools [20], poor confidence in the
outcome of a refactoring [19], and the fear of compromising
the socio-technical dynamics of the development team [22]
represent vital challenges for practitioners. The most relevant
consequence of these issues is that developers often apply
refactoring in a step-wise manner and without the adoption of
any tool [19], [23]. This is why previous research has shown
that refactoring might be risky for maintainability: Bavota et
al. [24] and Di Penta et al. [25] identified the refactoring
operations that negatively affect fault-proneness, while Kim
et al. [19] found that developers perceive refactoring as a
non-preserving operation, i.e., it may lead to undesired conse-
quences for both source code quality and effectiveness.

Recognizing the effort spent by the research community so
far, we point out the lack of empirical investigations into the
effect of refactoring on a crucial property for software develop-
ment and evolution: program comprehension [26]–[28]. This
relates to the ability of developers to understand the source
code and its functionalities before any changes are undertaken
[29]. On the one hand, previous research has shown that code
comprehension represents a large portion of the cost of any
software [30]–[32]. On the other hand, researchers have been
investigating the negative consequences of poorly documented
code or poorly designed code on change- and fault-proneness
[33]–[37]. More recently, Ammerlaan et al. [38] conducted a
controlled experiment with an industrial partner to assess how
refactoring improved program comprehension when applied
to small coding tasks, finding that it does not always increase
the overall ability of developers to deal with newly refactored
code. They concluded that refactoring may lower developer’s
productivity in the short term in cases where the code reads
differently from what developers have grown attached to.

This observation makes it clear that one of the critical
elements that might affect a developer’s productivity after the
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application of refactoring operations is program/code readabil-
ity, that is, the property describing how well developers can
read the source code [39]. Readability can be considered as
the basic unit of program comprehension [40] and, if not pre-
served, may induce developers to waste more time/resources
while evolving source code, other than increasing the risks
connected to the introduction of defects [35].

◎ Our Goal. We aim to look closer into the relation between
refactoring and code readability, intending to discover the
extent to which the application of different refactoring op-
erations may induce variations in terms of code readability.

Our empirical study is conducted on 156 Open-Source
Software (OSS). In the first place, we make use of REFAC-
TORINGMINER [41] to mine the evolution history of those
projects and identify the refactoring commits, namely the
commits where developers applied one or more refactoring
operations. We then compute a set of state-of-the-art program
readability metrics defined by Scalabrino et al. [42] on the
refactoring commits and on their previous commits: in this
way, we could precisely quantify how much the refactoring
operations modified the program readability metrics. Finally,
after the mining software repository exercise, we fit several
mixed-effect Multinomial Log-Linear models [43] to investi-
gate how the amount and type of refactoring operations, along
with other confounding factors, affect each of the program
readability metrics considered. The key results of the study
indicate that refactoring actions have a significant impact on
program readability, highlighting that they are crucial for code
comprehension and maintainability.

Structure of the paper. The related literature is discussed in
Section II. Section III describes the empirical setting of the
experiment by elaborating on the research questions, the data
collection and analysis procedures. Sections IV and V report
and discuss the results of the study, while Section VI provides
a more comprehensive analysis of the implications that the
study has for researchers and practitioners. In Section VII, we
discuss the possible threats to the validity of the study and
how we mitigated them. Finally, Section VIII concludes the
paper and outlines our future research directions.

II. RELATED WORK

This section gives an overview of studies which investigate
the impact of refactoring and propose practices to increase
code readability.

The Impact of Refactoring. The impact of refactoring on
software systems has been thoroughly studied from different
perspectives of software quality, including technical debt, code
smells, software changes, and metrics, and the results have
been conflicting. We report some studies herein.

Chaparro et al. [44] used a tool, RIPE, to study the effect of
12 refactoring operations on 11 quality metrics in 15 OSS, and
successfully predicted 38% of the metrics with a low deviation
from the actual metric value. Kim et al. [19] conducted a

large empirical study at Microsoft to investigate the benefits of
refactoring. They reported that developers observed improved
readability and maintainability, defect reduction, and features
being easier to add, among others, following refactoring.
However, they also pointed out that refactoring introduced
regression bugs, caused build breaks, and increased testing
costs, among others. The relationship between code changes
and (28 different types of) refactoring was also explored
in three OSS (APACHE ANT, ARGOUML, and APACHE
XERCES) by Palomba et al. [16] Duplicated code was the
motivation for refactoring. The study reported that refac-
toring targeting program comprehension and maintainability
was mostly applied during bug fixing activities. However,
when implementing new features, the refactoring activities
pertaining to improving code cohesion were applied. Bavota
et al. [24] investigated the impact of refactoring on defects.
While generally, refactoring does not induce defects, specific
refactoring types such as Pull Up Method and Extract Subclass
tend to introduce defects. Cedrim et al. [45] conducted a study
on the version histories of 23 projects to explore how ten
different refactoring types and a total of 16,500+ refactoring
instances affect 13 types of code smells. They reported that
only 9.7% refactoring reduced smells while 33% introduced
new ones. Tavares et al. [46] also analyzed the impact of ten
code smells on refactoring, more specifically, Replace Type
refactoring and Move Method. They conducted the study in
seven open-source Java systems from the QUALITAS CORPUS
[47]. They had mixed results. They observed that refactoring
decrease, increase, or have a neutral impact on the smells.
They also found that some smells are introduced or removed
by these two refactoring types. Tufano et al. [48] noted that
refactoring removes a low number (9%) of code smells during
their empirical study of 200 OSS from the ANDROID, APACHE
and ECLIPSE ecosystems. Fontana et al. [49] and Eposhi et
al. [50] focused on the effect of refactoring on the software
architecture and design respectively; the former study [49]
explored how refactoring impacted architectural smells and
anti-patterns. The refactoring activities removed some smells
and anti-patterns but also introduced new ones; the latter study
[50] observed that refactored classes had more design issues,
more specifically, the classes had code smells and were more
coupled and complex compared to other classes in the two
OSS. Abid et al. conducted an empirical study, followed by a
survey, to investigate the impact of refactoring on security in
30 OSS [51] and they concluded that some refactoring types
positively impacted security while others negatively did. The
effect of refactoring on security has also been explored by
other studies [52]–[55].

Program Comprehension and Code Readability. Code read-
ability refers to how easy a text is to understand and can
be considered as the basic unit of program comprehension, a
paramount attribute for maintainability and, subsequently, code
quality [39], [56]. Over the years, studies have investigated
various ways to improve code readability and program com-
prehension. The impact of Java coding practices on readability
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was investigated using an online survey with students and
practitioners [57]. Participants were shown code snippets and
had to comment on them. The study showed that while some
practices promoted readability, others seemed to have no effect
and one even had a negative impact. Scalabrino et al. [35],
[42] proposed the use of textual features based on source
code lexicon analysis to increase code readability. More than
5,000 people manually evaluated the features of code snippets
and concluded that their approach improved readability. Other
models have been proposed in the literature to increase code
readability [39], [58]. The impact of looping and nesting on
readability was assessed by conducting an experiment with 275
participants on 32 Java methods [40]. They found that reduced
nesting increased readability and understanding but avoiding
looping (do-while loops) increased readability, but for simple
and short loops only. However, do-while loops are easier to
understand compared to while statements. Piantadosi et al. [59]
explored the effect of code evolution on code readability at
the file level in 25 OSS. They concluded that only a very
small number of commits impact the readability, and big
commits that introduce new code can decrease readability.
The readability of test cases was explored by Grano et al.
[60]. They reported that test cases are generally less readable
than code. They also found that the readability of manually
generated test cases (compared to the readability of code, for
instance) is not a priority for developers, and the automated
test cases are even less readable than the manual ones. The
effect of colors on program comprehension and readability was
also studied. Rambally et al. [56] found that using different
color codes for various statements helped with readability,
while Feigenspan et al. [61] reported that background color
to highlight source code improve the comprehension.

Reflecting on Previous Work and Our Contribution. Pro-
gram comprehension and, more specifically, code readability
and the impact of refactoring have been studied extensively
on their own under different perspectives. However, the in-
tersection of both, namely, the impact of refactoring on code
readability and program comprehension is novel. To study the
phenomenon, we conduct a large-scale study, analyzing 96,268
commits from 156 OSS and measure code readability using
eight state-of-the-art metrics.

III. RESEARCH METHODOLOGY

The goal of this study is to assess the relation between
refactoring and program readability, with the purpose of
understanding how refactoring actions applied by develop-
ers impact the code quality and maintainability in terms
of readability. The perspective is of both researchers and
practitioners: the former are interested in understanding which
additional support developers would require when performing
refactoring; the latter are interested in evaluating the potential
consequences of refactoring on source code dependability.
The context is open source software (OSS). Our study was
designed based on the guidelines proposed by Runeson and

Host [62]. Based on the aforementioned goal, we defined our
first Research Question (RQ).

ü RQ1. To what extent do refactoring operations affect
program readability?

Our study is not limited to establish links between refac-
torings and the overall code readability, but also wants to
identify a subset of refactorings that improve the readability
of the refactored code, while also recognizing a subset of
“dangerous” refactorings that undermine the comprehensibility
by reducing the readability. Thus, we ask:

ü RQ2. Which types of refactoring operations show clear
positive or negative impacts on program readability?

We provide answers to these two RQs in Sections IV and V.

Context. The context of the study is composed of 365 Open
Source Software (OSS), and in particular, their change history
information. The projects are contained in an online platform
called PANDORA1 [63] that continuously collects data from
December 2020 investigating the code quality in terms of
code violations, technical debt, and code build-stability. We
selected this platform to enable further extension of this
work, considering different factors that can affect program
readability, such as code quality. Projects details are included
in the online appendix of our study [64].

Mining Refactoring Data. We mined the entire change
history of the considered projects to identify commits where
developers applied refactoring – we will call these refactoring
commits. To this aim, we ran version 2.1 of REFACTOR-
INGMINER [41] on each source code change. REFACTOR-
INGMINER2 is a publicly available tool that can detect 81
distinct types of refactoring operations through the analysis
of how the Abstract Syntax Trees of classes and methods
have changed concerning the previous commits. The output of
REFACTORINGMINER is formatted as a JSON file, reporting,
for each commit, the set of refactoring operations applied,
as well as the specific code snippets that were involved.
Despite the existence of alternative refactoring detectors (e.g.,
REFDIFF [65]), we opted for REFACTORINGMINER since it is
publicly available and has a detection accuracy close to 100%
compared to the performance of other detectors [41].

Among the 81 refactoring types supported, we discarded
the Change Package and Move Source Folder refactorings
as they only provide marginal (or even no) impact on the
syntactic structure of the source code. It is worth noting that
REFACTORINGMINER not only detects only a portion of the
traditional refactoring classified in the original Fowler’s cata-
log [1], but also detects additional types that cannot be mapped
to the original catalog, such as the composite refactoring Move
and Inline Method. In this regard, we performed a mapping
between the detected refactoring types with the ones in the

1http://sqa.rd.tuni.fi/superset/dashboard/1/
2https://github.com/tsantalis/RefactoringMiner
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TABLE I
TYPES OF REFACTORINGS CONSIDERED IN THIS STUDY, MINED USING REFACTORINGMINER [41].

Group Description Refactorings
Composing Methods Re-organize the way methods are

composed, such as streamlining their
logic or removing unneeded parts.

Extract/Inline Method, Extract/Inline/Split/Merge/Rename
Variable, Change Variable Type.

Moving Features
between Objects

Re-organize the distribution of func-
tionalities and data among classes.

Extract/Move/Rename Class, Move Method, Move Attribute.

Organizing Data Re-organize the way data is man-
aged inside a class.

Extract/Split/Merge/Replace/Rename Attribute, Change At-
tribute Type, Replace Variable With Attribute.

Simplifying
Method Calls

Simplify the interactions between
classes by making the methods eas-
ier to call and understand.

Split/Merge/Add/Remove/Reorder/Rename Parameter, Pa-
rameterize Variable, Change Parameter Type, Change Method
Access Modifier, Change Return Type, Rename Method.

Dealing with
Generalization

Moving functionalities along class
inheritance hierarchy.

Extract Superclass, Extract Subclass, Extract Interface, Pull
Up/Push Down Attribute, Pull Up/Push Down Method.

Others Other composite refactorings de-
tected by REFACTORINGMINER.

Move And Rename Attribute, Move And Inline Method,
Move And Rename Class, Move And Rename Method,
Extract And Move Method, Add/Modify/Remove
(Class/Attribute/Method/Parameter/Variable) Annotation,
Add/Change/Remove Thrown Exception Type, Change
Package, Move Source Folder.

catalog, so that we could group them by the categories defined
by Fowler [1], as described in Table I. We preferred keeping
the “uncanonical” types—collected in the Others group—as
they could provide valuable findings to our investigation. For
each refactoring commit detected by the tool, we counted the
number of occurrences of each refactoring type.

Mining Readability Metrics. The goal of this study was to
assess the impact of refactoring on program comprehension,
expressed in terms of code readability. To do this, we needed
to measure the variation caused by refactoring operations in
the readability level of the considered programs. We decided
to measure the readability by using the eight metrics defined
by Scalabrino et al. [35], which are based on textual prop-
erties of the source code, described in Table II. Two reasons
mainly drove the choice of these metrics. First, several studies
highlighted that textual features are significant descriptors
in the evaluation of code comprehension and, therefore, are
meaningful indicators of the overall readability level of source
code [27], [66]–[68]. Second, Scalabrino et al. demonstrated
that their newly-defined metrics are indeed a proxy of the
actual readability perceived by developers [35]. In other words,
the considered metrics are suitable to quantitatively assess
the readability of source code and qualitatively perceived as
relevant by practitioners. For two out of the eight metrics,
i.e., Number of Concepts (NOC) and Number of Meanings
(NM), having low values would be desirable in order to have
higher readability. These two metrics represent the hetero-
geneity of the topics—detected through clustering—and the
polysemy level of the terms used in the program’s source code,
respectively. Therefore, code snippets with many topics and
polysemous terms should be avoided to increase the overall
readability. On the contrary, high Textual Coherence (TC) and
Narrow Meaning Identifiers (NMI) values would represent

positive traits of the program because they would denote
cohesion among syntactic blocks of a method and the ease
of interpretation of the terms used, respectively. Similarly, the
Comments and Identifiers Consistency (CIC and CICsyn) met-
rics measure the coherence between the terms used in methods
and the ones appearing in the comments that accompanies
them (e.g., JAVADOC comments). The Comments Readability
(CR) metric is based on the Flesch-Kincaid index [69], which
is commonly used to assess the readability of natural language
texts. Thus, a higher index, which represent easy-to-read text,
should always be preferred when writing code comments.
Also, the Identifier Terms in Dictionary (ITID) metric relies
on natural language: it expresses the percentage of identifiers
used in the code that are also part of the English dictionary
and this has been shown to be perceived as beneficial [70].

To extract the values of the readability metrics, we applied
the following methodology. First, for each refactoring commit
detected by REFACTORINGMINER, we mined the source code
of the modified files using PYDRILLER [71], a PYTHON
framework for mining GIT repositories that allowed us to
obtain the two versions of each file touched by the commit,
i.e., the version before and after the commit containing the
refactorings. Then, we used the tool3 by Scalabrino et al. [35]
to obtain the values of the readability metrics of these two
versions of each file. Afterwards, we computed the delta (∆)
of each readability metric to establish whether there was an
increase, a decrease, or no variation in the metric values caused
by the actions carried out in the refactoring commit. Since our
study sets the granularity at the commit level, we collected all
the deltas obtained and aggregated together using the mean
operator—following the same aggregation used by the tool to
compute the metrics for files. It is worth pointing out that

3https://dibt.unimol.it/report/readability
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the Textual Coherence (TC) metric fails if the given code
snippet cannot be parsed or if it is made only of a single
syntactic block (e.g., a method without any branches). As a
consequence, the majority of the commits in our context did
not receive a valid TC value, leading us not to consider it.

Mining Control Metrics. Our aim was to determine if and
to what extent refactoring operations impact the readability of
source code, so we collected data describing the refactoring
modifications performed in the commits and the resulting
variations in the readability metrics. However, we recognize
that the fluctuations in the readability indicators are not nec-
essarily caused by refactoring in the narrowest sense but can
be due to the other changes applied in the commit. Therefore,
we exploited PYDRILLER to mine eight control metrics. The
first set of control metrics is intended to describe the overall
magnitude of the commit. We collected the number of Added
Lines (AL), Deleted Lines (DL), and the number of Changed
Methods (CM) for each JAVA file involved in a commit. These
three metrics alone can describe the commit in general, but
they do not provide adequate indications into the actual size
of the refactoring. Hence, we defined a heuristic to count the
number of lines of code that were added or deleted because
they were involved in a refactoring operation, which we named
Refactoring Added Lines (RAL) and Refactoring Deleted Lines
(RDL), respectively. Specifically, we used PYDRILLER to
extract the DIFF, which we related with the code snippets that
REFACTORINGMINER pointed out to be part of a refactoring
operation. Thus, we computed the intersection between these
two sets, so that we could obtain the lines of code added or
removed as part of a refactoring operation. In this way, we
gained information on the size of the refactoring in the strict
sense. The third and last set of control metrics is motivated by
the fact that readability may depend on other aspects related
to the files that were subject to the change. Therefore, for each
JAVA file modified in the commit, we mined three descriptors
that could summarize the overall structure of the source code,
i.e., Lines of Code (LOC), Cyclomatic Complexity (CC) [72],
and Token Count (TOK) [73]. All these metrics were computed
at the file level, hence we aggregated their values using the
mean operator to bring them at the commit level.

Data Analysis. After collecting the data required to address
our research questions, we proceeded with the analysis that
relates the refactorings with variations in the readability profile
of the modified code. In this respect, we were only interested
in establishing whether commits containing refactoring op-
erations have either positive, negative or no effect in terms
of the considered readability metrics. For this reason, we
remapped the ∆ values to categories that could suit our needs.
If a readability metric resulted in ∆ > 0 in one of the
refactoring commits we analyzed, this variation was mapped to
the category “Increased”—i.e., the refactoring commit caused
an increase in that metric. Similarly, if a readability metric
had a ∆ < 0, it was converted to the category “Decreased”.
Otherwise, it was converted to “Stable.” Afterwards, to address
our RQs, we built eight different statistical models, one per

readability metric, acting as our dependent variables. Then,
we used the number of refactoring operators and the control
metrics as the independent variables. Since our dependent
variables had been made categorical, we fit a mixed-effect
Multinomial Log-Linear model [43], a classification method
that can generalize logistic regression to multiclass problems,
thus fitting our case. We set the “Stable” category for be-
ing the model’s baseline, as this type of model requires a
reference level to provide the prediction probabilities for the
classes “Increased” and “Decreased”. The eight models were
built using the R statistical toolkit exploiting the multinom
package available in nnet4. Before fitting the models, we
took the issue of multicollinearity into account—arising when
two or more independent variables are highly correlated—
causing biases in the predictive capabilities of the model, and
subsequently, in the results interpretation. In this respect, since
the data are not normally distributed, we computed Spearman’s
rank correlation [74] between all possible pairs of independent
variables, with the aim of determining the existence of strongly
correlated pairs (i.e., variables for which the Spearman’s
ρ2 > 0.6). This analysis discovered strong correlation among
Lines of Code (LOC), Cyclomatic Complexity (CC) and Token
Count(TOK) control metrics, requiring us to discard two of
them. We removed CC and TOK as we preferred keeping the
most simple metric (LOC) in terms of explainability.

As for the interpretation of the results, it is worth not-
ing that the models’ logit coefficients are relative to the
baseline category “Stable”, indicating how the independent
variables affect the probability of the dependent variable being
classified as “Increased”, “Decreased” or “Stable”. In this
sense, each model provides two distinct logit coefficients per
independent variable. For instance, a refactoring type ri with
a logit coefficient of -1.50 when comparing the “Increased”
category with the baseline (“Stable” ) implies that a one-
unit increase of ri leads to a decrease of the chances of
the dependent variable being classified as “Increased”, hence
having higher probability of remaining unchanged. In addition,
we also computed the Odds Ratios (OR) [75], given by
the exponentiation of the logit coefficients. The Odds Ratio
facilitates the interpretation of the results: it represents the
probability of being classified to the given class (“Increased”
or “Decreased” ) over the probability of being classified as the
reference class (“Stable” ). As an example, a refactoring type
having Odds Ratio > 1 for the class “Decreased” means
that a commit having several instances of that refactoring is
more likely to cause a decrease to the dependent variable. A
refactoring type with both Odds Ratios > 1 implies that the
refactoring type varies the value of the dependent variable,
but without any clear distinction between an increase or a
decrease.

Verifiability and Replicability. In order to allow our study
to be verified and replicated, we have published the complete
raw data, along with the data collection and analysis scripts
in the online appendix [64].

4https://cran.r-project.org/web/packages/nnet/nnet.pdf
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TABLE II
LIST OF READABILITY METRICS CONSIDERED IN THIS STUDY TO ANSWER OUR RQS.

THE COLUMN ‘DESIRABLE’ VALUE INDICATES THE VALUE THAT WOULD BENEFIT THE READABILITY.

Readability Metric Abbrev. Description Desirable Value
Comments and Identifiers
Consistency

CIC Overlap between the terms used in method com-
ments and the ones in the method bodies.

High

Comments and Identifiers
Consistency - Synonym

CICsyn CIC metric extended considering synonym terms. High

Identifier Terms in Dictionary ITID Percentage of identifiers used in the code that are
also part of the English dictionary.

High

Narrow Meaning Identifiers NMI Sum of the particularity of the identifiers. High
Comments Readability CR Flesch-Kincaid reading-ease score (FRES) of the

comments linked to methods.
High

Number of Meanings NM Polysemy level of the terms appearing in the
methods bodies.

Low

Textual Coherence TC Overlap between the terms used in the pairs of
syntactic blocks.

High

Number of Concepts NOC Number of topics detected among the statements. Low
Number of Concepts - Nor-
malized

NOCnorm Number of topics detected among the statements
normalized on the number of statements.

Low

IV. ANALYSIS OF THE RESULTS

In this section, we report our results. First, we provide a
high-level overview of the results, and then we delve into each
refactoring group described in Table I.

Overall Results. We analyzed 365 OSS. However, the read-
ability metrics collection has only been successful for 156
projects, with a change history composed of 96,268 commits.

By looking at the Odds Ratios obtained (available in our
online appendix [64]), we can see that only in very few
cases (< 6%) the predictors were not statistically significant
(p < α = 0.05). Thus, in these cases we were not able
to use their Odds Ratios to derive any statistically relevant
conclusion. Half of these cases occurred in the model con-
cerning the Comments Readability metric, with 17 out of 67
predictors being above the given significance level in that
model. This finding was somehow expected, as the Comments
Readability is given by the Flesch-Kincaid index computed
on the comments linked to class methods, meaning that it
is not related to any structural aspects of the source code.
Since the considered refactoring types are only concerned
with the syntactic part of the modified code, there are no
changes affecting the comments alone. Moreover, the pre-
dictors exhibiting a statistical significance, both have their
Odds Ratios below 1, indicating a higher likelihood to keep
the Comments Readability unchanged (i.e., “Stable” category)
as the number of those refactorings increase. From another
point of view, Reorder Parameter refactoring turned out not
to be significant in the majority of the cases (namely, 5
out of 8 models). This was also not unexpected: Reorder
Parameter, despite affecting structural aspects of the source
code, is limited to swapping the method’s parameters in
the signature, without changing the terms found. Indeed, the
readability metrics considered in this study are not influenced
by the way the terms are arranged within a sentence, thus

explaining the low significance. Curiously, Reorder Parameter
refactoring has a moderate impact (i.e., both Odds Ratios > 2)
on the Comments Readability metric. This can be explained
by the fact that reordering the methods’ parameters has an
impact on their documentation comment, causing variations to
the Flesch-Kincaid index.Generally speaking, the considered
control metrics either have no impact at all, e.g., Lines of Code
having Odds Ratios equals to 1, or high likelihood to keep the
dependent variable unchanged. There were only some cases in
which these metrics had an impact, such as the Added lines
number being related to an increase in the Number of Concepts
metric, while the Deleted Lines number related to a decrease
of the same metric. This is not surprising as the Number of
Concepts metric is strongly influenced by the size of files,
i.e., the more the Lines of Code, the higher the detected topics
number among the statements.

¤ Finding 1. The isolated application of certain refactorings
may not affect the program readability, but other collateral
code-changing activities may do.

Composing Methods Refactorings. From this group, eight
refactoring types were involved in the building the models. The
majority of these are characterized by both Odds Ratios being
greater than 1, indicating their capability to cause variations
in the readability of a file, e.g., the case of the Inline Method
refactoring. This, however, does not allow us distinguish
clearly whether these variations are actually increasing or
decreasing. To some extent, the Extract Method refactoring
behaves in a similar manner to its inverse Inline Method—i.e.,
causes variations to many metrics—but for the Comments and
Identifiers Consistency metric, there is a moderate increase,
i.e., Odds Ratio > 2 for the “Increased” category, while
Odds Ratio < 1 for the “Decreased” one. In other words,
increasing the number of Extract Methods applied in a commit
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by one unit causes the probability of having a readability
improvement, in terms of the consistency between identifiers
and comments, to double with respect to the probability of
remaining unmodified. This could be explained by the nature
of the Extract Method refactoring itself. An Extract Method is
applied on a method M , from which we want to extract and
move a set of statements that do not fit the responsibilities
of M . For instance, a method sendToServer() that both
sends some data to a server and prints some information
to the standard output, could be refactored by removing the
logging logic into a dedicated method, e.g., log(), which
is then referenced by the method sendToServer(). Sub-
sequently, such a refactoring moves a set of identifiers and
their synonyms from a method in which they are considered
“inconsistent” to a method where they are more consistent.

The Split Variable refactoring (a.k.a. Split Temporary Vari-
able [1]) exhibits strong positive effects on multiple readability
aspects. This refactoring consists of the addition of new local
variables to host the output of expressions instead of using
a single variable to host the results of different expressions.
In this way, each variable contains the value of a single
expression, increasing the cohesion at the granularity level of
a variable. The only case in which the readability worsens
is with the Number of Concepts dependent variable, which
is computed by clustering the Lines of Code according to
the terms they share. In this respect, the removal of shared
variables reduces the overlap among the lines, increasing
the number of concepts, which translates into an increased
reading difficulty. However, the inverse refactoring Merge
Variable (a.k.a. Inline Temp [1]) was expected to have an
opposite effect like the Split Variable; however, it only causes
generic variations, with the exception for the Comments and
Identifiers Consistency metric, which has a negative effect on
readability. This is in line with the definition of Comments
and Identifiers Consistency, as the Merge Variable refactoring
is meant to reduce the number of variables in a method, so
likely increasing the discrepancies between the code and the
documentation comment.

¤ Finding 2. Re-organizing the source code with the goal
of creating more cohesive components, e.g., methods, has
a positive impact on the readability, especially in terms of
coherence between identifiers and documentation comments.

Moving Features between Objects Refactorings. Despite
being used for creating more cohesive classes, the Extract
Class refactoring does not show any clear changes in the
readability profile, but it only makes generic variations (both
Odds Ratios < 2). This may be explained by the selected
set of readability metrics. In fact, an Extract Class refactoring
involves, by its nature, more than one class, while the read-
ability metrics are meant to describe the readability of a single
class, explaining the absence of clear variations.

The other types of refactorings in this group, i.e., Move
Class/Attribute/Method and Rename Class, follow a similar
trend to Extract Class. They impact the readability without

clearly indicating whether it was an improvement or not.

¤ Finding 3. The refactorings belonging to the category
‘Moving Features between Objects’ determine variations in
terms of readability but do not show any clear indication
of their positive or negative impact, most likely because
the considered metrics cannot properly measure the overall
readability of multiple classes together.

Organizing Data Refactorings. All refactorings belonging
to this group have diversified impact on the readability. The
Extract/Split/Merge Attribute refactorings cause medium-large
variations of all the readability metrics, without any fixed
trends, with the exceptions of Comments and Identifiers Con-
sistency (CICsyn) and Identifier Terms in Dictionary (ITID),
for which instances of Merge Attribute refactorings increase
and decrease their values, respectively. Such refactoring is ap-
plied to remove unneeded class fields, also causing a removal
of inconsistent identifiers, and so explaining the increase in
the CICsyn and the decrease in the ITID. Likewise, the Re-
place Attribute refactoring—applied to remove unneeded class
fields as well—increases CICsyn and decreases ITID. It also
decreases the ambiguity (Number of Meanings metric), while
increasing the particularity of the terms (Narrow Meaning
Identifiers metric). All things considered, this refactoring type
has predominantly positive effects on the readability, but still
has some drawbacks, likely depending on how it is applied.
Indeed, if the replaced attribute has a name that is difficult
to comprehend, then this would be an appropriate option to
improve the readability. Conversely, if the replaced attribute
already provided a good contribution to the overall readability,
then the refactoring may damage the readability.

¤ Finding 4. Refactorings aiming at re-organizing data
within classes do not seem to have a clear impact on the
readability. Removing unnecessary class fields has positive
effects, but that depends on how the refactorings are applied.

Simplifying Method Calls Refactorings. The Split Parameter
refactoring decreases the value of Number of Meanings, indi-
cating a readability improvement as it reduces the ambiguity
of a parameter by splitting it into two less ambiguous ones.
The opposite refactoring Merge Parameter, instead, provides
an increase in Comments and Identifiers Consistency (CIC)
and Identifier Terms in Dictionary (ITID) while decreasing the
CICsyn, i.e., the Comments and Identifiers Consistency com-
puted also considering synonyms, so showing mixed effects.
Adding or removing parameters to a method signature causes
variations without any specific trend. The Rename Parameter
refactoring is related to an increase in the ITID, suggesting
that developers apply this operation to clarify the names of the
parameters, opting for English terms. This effect should have
been identical for Rename Variable refactorings, but in those
cases, it seems that there is no sufficient empirical evidence
as there is only a generic variation.
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¤ Finding 5. The renaming of code elements is expected
to improve readability, as it is done for that specific goal in
mind. Yet, this does not always happen in practice, probably
because the choice of the new name may affect metrics
influenced by the vocabulary of the identifiers.

Dealing with Generalization Refactorings. The Extract Su-
perclass refactoring seems to have negative effects on the
readability. Indeed, both Number of Meanings (NM) and
Normalized Number of Concepts (NOCnorm) have higher
likelihood to increase when there are instances of Extract
Methods. This can be explained by the nature of this type
of refactoring. The increase of NM may be caused by the
addition of a new class (i.e., the extracted superclass) which
is characterized, due to its nature, by the use of more generic
and ambiguous terms. For the same reason, a superclass may
contain a larger number of topics with respect to its subclasses,
possibly explaining the increase in NOCnorm. However, the
decrease induced by Extract Subclass to NOCnorm may be
caused by the creation of the new subclass containing part
of the topics of the refactored class, thus resulting in a
lower mean value. The other types of refactorings that move
class members along the hierarchy (i.e., Pull Up Attribute,
Push Down Attribute, Pull Up Method, Push Down Method)
generally cause variations in all the metrics. In particular, Pull
Up Attribute has a contrasting effect. On the one hand, it
improves the readability by increasing Comments Readability;
on the other hand, it hinders it by increasing the Number of
Concepts. Such differences may be explained by a lack of
sufficient empirical evidence, hence requiring additional data
to derive any relevant conclusions.

¤ Finding 6. Moving the logic along the hierarchy structure
creates more cohesive classes and shows better readability
to some extent (e.g., fewer number of topics). However, the
creation of superclasses inevitably has a negative impact as
it makes use of more generic and ambiguous terms.

Other Refactorings. Refactorings in this group represent se-
quences of two distinct refactoring operations applied one after
another. Applying Move and Rename Attribute refactorings
has a moderate-strong impact on many readability metrics.
On the one hand, the readability is improved because of the
increases in Comments and Identifiers Consistency, Identifier
Terms in Dictionary, and Narrow Meaning Identifiers, as well
as the decreases in Number of Meanings and Number of
Concepts. This implies that placing an attribute into a different
class and changing its name have two key benefits. First,
it improves the coherence of the attribute name within the
methods it appears, likely because the moving of an attribute
is done to place it in a more appropriate class; second, it
happens to be clearer (i.e., using more English terms) and less
ambiguous because of the renaming effect. However, there is
still a worsening caused by an increase in the Normalized
Number of Concepts (NOCnorm), but this could be caused
by the specific destination class, which has fewer lines of

code—indeed, NOCnorm is higher in code snippets exhibiting
a smaller number of concepts.

The similar composite refactoring, Move and Rename
method, provides a readability improvement by the means of
an increase in the Narrow Meaning Identifiers metric, i.e., the
new method name is less polysemous. All the other composite
refactoring provide generic variations to the readability profile.

¤ Finding 7. Noticeable changes in readability happen
when multiple refactoring operations involving renaming
are applied in sequence. For example, applying Rename
Attribute refactoring alone may not be enough to improve
the readability, so Move Attribute refactoring should be
contextually done to provide a more suitable class. This is
in line with previous findings that showed how the creation
of more cohesive components is desirable for readability.

V. FURTHER ANALYSES

The main findings from our research assert that refactoring
operations have an impact on programs’ readability. In our
study, we considered the variations in readability caused by
refactoring commits, i.e., commits where at least one refactor-
ing modification was performed. However, as previous work
has highlighted [76], refactoring commits do not only consist
of refactoring operations series, but also include other modi-
fications in the code. In fact, refactoring is mostly performed
along with functional modifications, and it is very uncommon
to see a commit dedicated explicitly to refactoring. As a matter
of fact, in the 156 projects considered, we found that only
3% of the commits containing refactoring operations were
explicitly marked as refactoring commits by the developers.
Therefore, we questioned our research findings, acknowledg-
ing that the variations in readability could be highly influenced
by functional modifications in the code rather than being ex-
clusively caused by refactoring. Hence, we decided to perform
further analysis, only focusing on commits where most of the
modifications were indeed refactoring operations. To do this,
we defined a heuristic approach to determine the purity of a
refactoring commit, i.e., the extent to which a commit can be
considered a refactoring commit, given by the percentage of
pure refactoring operations applied among all the modifica-
tions performed in the commit. For each refactoring commit
reported by REFACTORINGMINER, we computed the purity
metric as the sum of Refactoring Added Lines and Refactoring
Deleted Lines over the sum of Added Lines and Deleted Lines.
We re-conducted our analysis on three commit subsets, with
purity greater than 25%, 50%, and 75%, to assess the validity
of our findings. Clearly, the lower the purity threshold was
set, the more similarity persisted between the original dataset
of commits and the reduced dataset used for the additional
analysis. Therefore, as expected, the results obtained in the
supplementary analysis considering a 25% purity threshold
were consistent with the main ones. Nevertheless, in the
other two further investigations, i.e., considering 50% and
75% purity, the findings were coherent with the initial results
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obtained using the whole commit history without considering
any purity threshold. Thus, we can conjecture that the presence
of non-refactoring modifications in commits does not nullify
the effect of refactoring actions on readability. Due to limited
space, we do not report the complete results in the paper, but
make all the data available in the online appendix [64].

VI. DISCUSSION AND LESSONS LEARNED

The analysis of the results revealed interesting insights that
let us distill a number of lessons and/or implications on the
impact of refactoring on code readability.

Refactoring: Pleasure and Pain. The first key aspect that
we would like to point out is related to the overall effect
that refactoring has on readability. Our study highlighted
that refactoring operations may have a negative impact on
readability, confirming that refactoring is a challenging activity
that may not necessarily have a positive effect on code quality.
Therefore, there is need for automated refactoring recom-
menders to consider the worthiness of refactoring actions, and
help developers perform only quality-enhancing modifications.

� Lesson 1. Refactoring may not always have a positive im-
pact on code readability. Refactoring recommenders should
consider the worthiness of the suggested modifications.

It Only Tells Part of the Story. The study that we performed
consisted of a quantitative analysis on the impact of refactoring
operations on programs’ readability, which can be considered
as the basic unit of program comprehension. Although the
readability metrics that we used have been validated as good
predictors of the developers’ perception of code readability
[35], we recognize that they only capture aspects related to
vocabulary and lexicon of the code. As we discussed in Section
IV, there are some examples (see Finding 6) in which the
readability metrics suggest low code quality, while, actually,
the maintainability and comprehensibility are high. In fact,
code comprehension is concerned with how a developer reads
code rather than what s/he reads, and involves more complex
cognitive processes [27]. Researchers have been working on
the definition of additional, complementary metrics to capture
those cognitive processes. For instance, Arnaoudova et al.
proposed the so-called linguistic antipatterns, i.e., inconsisten-
cies among the naming, documentation, and implementation
of entities [77], [78]. These antipatterns may make code
and its purpose not very understandable, thereby confusing
developers. It is important to notice that these inconsistencies
may still be present in code with good readability values.
Therefore, readability metrics alone only tell part of the story
of developers’ perception on code comprehensibility. As part
of our future research agenda, we plan to extend our empirical
study and consider a larger amount of code comprehension
metrics. Also, a qualitative analysis will provide a significant
insight on the actual developers’ points of view. In this way,
we will be able to understand the real impact of refactoring op-
erations on program comprehension, by identifying in details
the positive aspects and the problems practitioners face.

� Lesson 2. Readability metrics are only a part of the
story. Further analyses on the impact of refactoring on
other cognitive processes would provide more complete and
concrete insights.

Cohesion is the Key. Another important aspect emerging from
the findings is the importance of creating cohesive compo-
nents [12], [33], [79], [80]. Indeed, classes and methods with
fewer responsibilities have lower number of topics and use
terms with lesser ambiguity, translating into better readability.
Moreover, a higher cohesion at the finest granularity level,
i.e., variable, has positive effects too. While this finding was
kind of expected, it still corroborates the need of considering
code cohesion during refactoring tasks. As such, the results
of this study promote and further encourage the definition of
refactoring recommenders that explicitly consider cohesion as
one of the targets to optimize.

� Lesson 3. Creating more cohesive components should be
encouraged and suggested by refactoring recommenders.

Better Together. Our analysis revealed cases in which some
refactoring types, e.g., Rename Attribute, have different effects
depending on whether they are applied individually or in
combination with other refactoring operations, e.g., Move At-
tribute. These findings encourage us to investigate the impact
of composite refactoring on quality attributes. While some
preliminary research efforts have been done [81], [82], we
believe that further analyses would be beneficial to better
understand the phenomenon and the implications it has for
software maintainability.

� Lesson 4. Refactorings applied in sequence show clearer
results with respect to their individual application.

Beware of What You Mine. As for the detection of refactor-
ing operations among commits, during our work, we noticed
that REFACTORINGMINER presents some noteworthy charac-
teristics. In particular, it only recognizes a limited portion of
the refactoring types defined in the literature [1], [83]. At the
same time, it captures plenty of other kinds of elementary code
changes, e.g., Change Attribute Type, and many composite
operations, e.g., Move and Inline Method, that are not listed in
the original catalog of refactorings [1]. These aspects have to
be considered when building a dataset of refactoring commits,
since not all the mined modifications are canonical refactoring
actions. We decided to analyze anyways the "uncanonical"
refactorings, grouping them in the Others category, and to then
perform additional steps to assess the purity of the refactoring
commits (see Sections III and V). Similarly, we encourage
other researchers who might work with refactoring data to
accurately ponder how to manage the supplementary data
provided by REFACTORINGMINER. At the same time, we
highlight that there is need for an automated tool that can
properly point out canonical refactorings and distinguish them
from other code changes.
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� Lesson 5. There is a need for automated tools to detect
canonical refactoring operations and discern them from other
code changes.

VII. THREATS TO VALIDITY

This section discusses the factors that might have influenced
our results and how we mitigated them.

Construct Validity. In the context of our study, we employed
automated tools to mine refactoring commits data and compute
readability metrics. As for the refactoring commits data, we
used REFACTORINGMINER to identify and locate refactoring
operations applied in commits. Among the refactoring detec-
tors available in the literature, the selection of REFACTOR-
INGMINER was driven by the results reported by Tsantalis
et al. [41], who showed a detection accuracy close to 100%.
When it comes to the mining of commit descriptive data, i.e.,
metrics such as Lines of Code of the source code files touched
by the commit, we used PYDRILLER, a Python framework
for mining GIT repositories. During the data mining phase,
we excluded from our study the data related to non-source
code files, such as readme and configuration files, because
the primary goal of our study was to assess the impact of
refactoring operations on code readability. Since we operated
at the commit level, the major threat to the validity of our work
is related to the difficulty of isolating refactoring operations
from mere modifications in the source code. As discussed
in Section V, we recognized that we could not exclusively
impute to refactoring the variations observed in readability
metrics values. Therefore, we defined the purity metric to
mitigate this threat and re-conduct our analyses on those
commits in which at least a certain percentage of modifications
were due to refactoring. Although this custom-defined metric
is based on a heuristic approach, we are convinced that it
can acceptably summarize to what extent a commit can be
considered a refactoring commit, i.e., if its purity is greater
than a certain threshold, e.g., 75%. Still, we admit that there
is a need for a more precise metric that could express the
proportion of refactoring operations applied in the commit,
and we encourage the community to propose a more robust
approach. As for the readability metrics, we used Scalabrino et
al.’s tool [35], which computes the readability level of a Java
code snippet or class in terms of eight metrics. For verifiability,
all the data are publicly available in the online appendix [64].

Internal Validity. When building statistical models, we se-
lected confounding factors, i.e., the control metrics described
in section III, to control our findings for aspects that might
have explained the variations in the readability metrics better
than refactoring operations. We recognize that there might
be additional factors that were not considered in our study,
and, as such, replications of our work would be desirable.
Nonetheless, our manual follow-up analysis (see Section V)
had the goal of further investigating the underlying reasons
behind the relation between refactoring and readability, possi-
bly mitigating threats to internal validity.

Conclusion Validity. Concerning the relation between treat-
ment and outcome, a key threat is the statistical methods
adopted to address our RQs. We opted for a Multinomial
Logistic Linear statistical approach [43] as our problem was a
multiclass problem involving both categorical and continuous
independent variables. Before fitting the models, we also
verified the presence of correlated variables that might lead
to multicollinearity. An interesting finding that we observed
is that the quantity of pure refactoring modified lines is not
correlated with the total number of modified lines, highlighting
that refactoring operations’ size is not strictly proportional to
the overall size of the commit. We aggregated the descriptive
metrics related to all the files in a commit by using the mean
operator. While this choice could have been influenced by
skewed distributions of metric values, we still opted for this
aggregator instead of the median since it could provide an
overall description of the commit. In the online appendix [64]
we provide all the raw data, along with other aggregations,
i.e., median and sum.

External Validity. Our study targeted 156 projects with a
change history composed of 96,268 commits. We cannot
exclude that different results could be obtained when consid-
ering systems of other ecosystems developed using different
programming languages and with different maturity levels.
Replications targeting a more extensive set of projects would
be, therefore, desirable. Therefore, the online appendix [64]
provides all the data and scripts to favor researchers interested
in replicating our study in other contexts.

VIII. CONCLUSION

We analyzed the impact of refactoring on code readability
and provided initial insights into the relation between refac-
toring and program comprehension. By mining refactoring
data and readability metrics of 156 OSS, we found that
refactoring does not always have a positive impact and, indeed,
some of the considered refactorings demonstrated to negatively
influence the readability of source code. Worthy of note are
the refactoring actions aiming at increasing cohesion and the
composite refactoring operations, which generally improved
the overall readability of the code in a significant manner.
Based on these findings, we identified several lessons learned
for researchers and practitioners, which will also drive our
future research agenda: we plan to further investigate the re-
lation between refactoring and program comprehension, other
than devising (semi-)automated recommenders that may find
a compromise between multiple quality attributes, including
readability and comprehensibility.
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